Archives: Development

Fitting moteus motor saturation models

Way back in 2020, I wrote about the motor saturation model that moteus uses to accurately calculate torque when a motor is operating in a region where the stator becomes saturated. What I didn’t write about was a method for actually determining those fit parameters for a given motor. This isn’t too critical, as most position mode applications don’t require the applied torque to be terribly accurate, but in some cases it does matter. When that is the case, there is now a tool that can calculate parameters appropriate for entering into moteus. Read on to find out more!

Updated moteus output specifications

Using the newly data from the newly released moteus performance analysis tool, we’ve gone and updated the rated output currents for each moteus controller. The conventions for such ratings are measured at 24V supply voltage with the default PWM frequency selected.

In addition, each value has a link to the mpat page which shows that value in context, so you can see for instance that the 62A current with maximum cooling for the moteus-x1 requires even more cooling than just a 12V fan alone provides.

Correcting the encoder filter frequency

Way back in 2021, I described the approach moteus uses for filtering encoder values and its derivation from the “all-digital phase locked loop”. What I did not realize until now was that the formulas used in that derivation operated based on the “natural frequency” of the filter, not the 3dB cutoff frequency as I had intended. They are related by a constant, but this resulted in the bandwidth of the encoder being higher than expected. Here, I’ll set the record straight, and document how that effects moteus going forward.

TLDR: Now moteus has slightly less audible noise for the same effective control performance. Read on for the details.

Moteus performance analysis tool - v2

Well, that didn’t take long! Only a short time ago I announced the first release of the moteus performance analysis tool. In that short time frame, I basically did a complete rewrite (more on that later on), that added a bunch of new capabilities. You can now create nearly any table comparison you can imagine, enter custom motor configurations and even produce 2D graphical plots showing supply power, temperature, or efficiency versus speed and torque. Check out the tool live here, and read on to learn more.

Moteus performance analysis tool

Recently I showed I was able to use the new dynamometer fixture I built to capture detailed thermal modeling parameters for motor controllers and motors. In this post, I’ll describe how I turned that into the initial version of a tool that lets you compare the performance of different moteus controllers (and some others), along with different motors, to help design an overall motion system.

TLDR: Try it out: Moteus Performance Analysis Tool

Measuring thermal parameters empirically

In the last post, I gave an overview of what thermal metrics are relevant to motor drive applications and how they drive the important performance metrics of controllers and motors. In this post, I’m going to look at how to measure those thermal parameters empirically in at least a crude way, but with enough accuracy to be useful for practical design applications.

What do we want to measure?

There are a set of parameters that we would like to be able to measure that have some overlap between the controller and motor case. For both, we want to be able to measure:

Thermal modeling for moteus and motors - a beginning

One of the things I’ve been wanting to understand better for quite a long time is the thermal performance of moteus and motors when used in realistic applications. In many, if not most systems, thermal limits of one or another determine the eventual sizing of controllers and motors and are one of the most important performance factors. I’ve covered this before to a superficial degree in a previous post (customizable pwm rate) but it was far from a general solution. The newly provisioned dynamometer fixture, with its ability to accurately measure input current and power, provided a great opportunity for finally tackling this. This post will describe a bit of the motivation for the work and why you should care.

Improved dynamometer

Long ago, in a workshop not so far away, I built a dynamometer for characterizing moteus controllers and motors. In the intervening 5 years, we released the moteus-r4.11, moteus-n1, moteus-c1, and now the moteus-x1! For each of these controllers, and the many firmware releases in between, this fixture has still served as a critical part of the validation procedure for new firmware releases and new product releases. However, it was time for a few improvements when tackling the moteus-x1, so here is a brief write up of the new result.